

NOAA Satellites - Current & Future

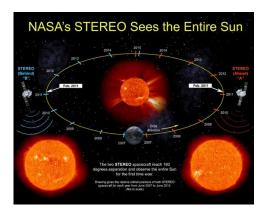
W. Denig¹, R. Redmon¹ & P. Mulligan²

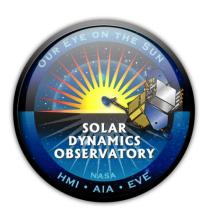
¹National Geophysical Data Center

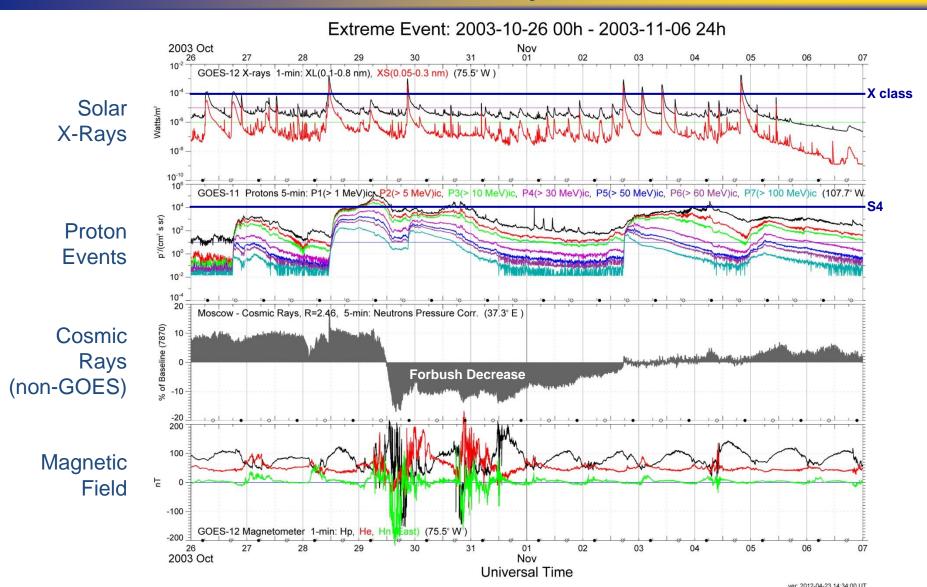
²Office of Systems Development


NOAA Operational Space Weather

Data Used in SWx Operations

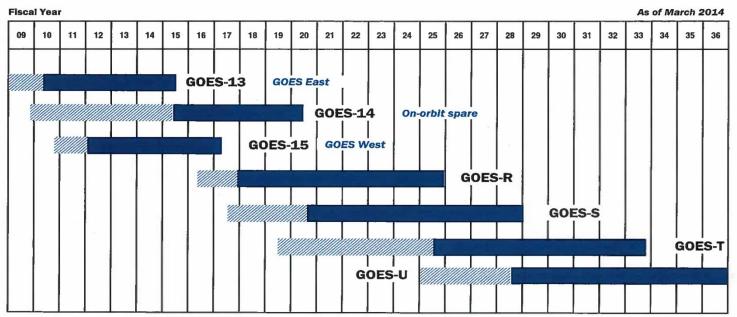

The NOAA Space Weather program relies on a variety of NOAA (top) and non-NOAA (bottom) satellite assets to conduct its operational mission





GOES Environmental Data

40 Years of Geostationary Measurements


Continuity of GEO Measurements

Transitioning to GOES-R/S/T/U

Continuity of GOES Mission

Approved: Moss E. Kusyan Assistant Administrator for Satellite and Information Services

GOES-R (R/S/T/U) Series

Improved SWx Capabilities

The GOES-R series space/solar sensors provide incremental improvements to current NOAA GEO space weather monitoring. The first launch date of

the GOES-R series is late 2015.

Solar X-Ray Sensor (XRS)

- · Measures the irradiance (total brightness) of the sun in two x-ray channels
 - a 0.05 to 0.4 nm a 0.1 to 0.8 nm
- Provides a first alert of impending solar stoms and space weather events.
- Observes solar flares and provides absolute brightness information.
- Drives space weather scales and operational models.

Solar Extreme Ultra-Violet Sensor (EUVS)

- Observations of the Solar EUV Spectrum from 5 to 125 nm
- Provides solar EUV input to thermosphere and ionosphere models which provide specification and forecasts
- Models provide specification and

Increased # of

wavelength bands

Solar Ultra-Violet Imager (SUVI)

Completely Different than GOES NOP:
• GOES NOP SXI observes in x-rays (0.6-6 nm)

- SUVI will observe in the Extreme Ultra-Violet (EUV) (10-30 nm)
- Narrow band EUV Imaging: Permits better discrimination between features of different temperatures 30.4 nm band adds capability to detect filaments and their eruptions
- 6 wavelengths (9.4, 13.1, 17.1, 19.5, 28.4, and 30.4 nm) 2 minute refresh for full dynamic range · Flare location information (Forecasting event arrival time and geo-effectiveness

SEISS.16: One-minute averages - all

SEISS.17: Five-minute averages - all

SEISS.18: Convert differential proton

flux values to integral flux values

charging SEI\$\$.20: Event detection based on

moments & level of spacecraft

MPS and SGPS channels

Active region complexity (Flare forecasting) Coronal hole specification (High speed solar wind forecasting)

Credit: Lockheed-Martin Space Environment In-situ Sensor Suite

SEISS

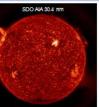
Four Subsystems Measuring Electrons, Protons, and Heavier Particles

MPS-Low: Spacecraft charging, ground-induced currents

- (electric power grid)
- 30ev-30keV electrons 30ev-30keV protons
- 14 annular bins

MPS-High: Spacecraft charging, deep dielectric charging

- 40keV-4MeV electrons
- 80keV-10MeV protons
- · 10 energy bands at 5 angles


SGPS: Solar Energetic Particle events (SEP), solar radiation storms (protons), HF communication (airlines), astronaut radiation, satellite degradation.

- 1 MeV-500MeV protons
- · 4MeV-500MeV alphas
- · 10 energy bands at 2 angles

EHIS: Satellite single event upsets, astronaut radiation

- 10MeV/nucleon-200MeV/nucleon
- · Distinguishes H, He, C-N-O, Ne-S and the Fe group, Z=17-28
- 5 energy bands

rovides improved proxy data: many pixels as SUM scence 8 EUV bands, 5 of which match SUVI exactly

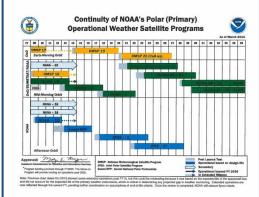
Solar UV imagery versus soft x-rays

Improved particle energy coverage

Not shown: GOES-R Magnetometer

Continuity of LEO Measurements

An End of an Era (since 1978)



http://www.ngdc.noaa.gov/stp/satellite/poes/index.html

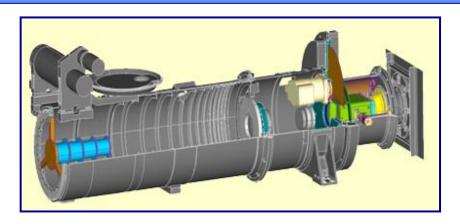
EGU - 27 Apr -02 May 2014

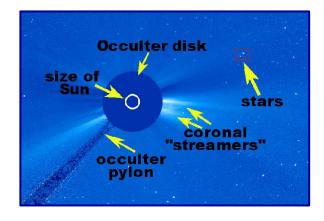
- NOAA-19 is the last NOAA satellite in polar LEO to provide operational SWx data
- European MetOp satellites carry NOAA Space Environmental Monitor (SEM) packages
 - MetOp A CY2006 2012 (SEM)
 - MetOp B CY2012 2017 (SEM)
 - MetOp C CY2016 2020 (SEM)
- Data from POES/MetOp will continue to be available through the end of these programs

New Capability Operational SWx Data from L1

NOAA currently relies on the NASA ACE spacecraft to provide advanced warning of hazardous space weather conditions

- The DSCOVR spacecraft will measure the solar wind (n_p, v_p, t_p) and the interplanetary magnetic field at 240 R_e forward of the earth
- The DSCOVR spacecraft refurbishment is nearing completion for a launch in Jan 2015
 - ✓ Recalibration of Plas/Mag complete
 - √ Magnetic cleanliness testing complete
 - Mag is being relocated to end of boom
 - Integration phase of the project is beginning
- USAF plans on a Space-X Falcon 9 launch
- DSCOVR solar wind/IMF data downlinked via the Real-Time Solar Wind Network (RTSWnet)
- Mission transfers to NOAA at L+90 days
- Secondary mission Earth Observations


Deep Space Climate Observatory (DSCOVR)

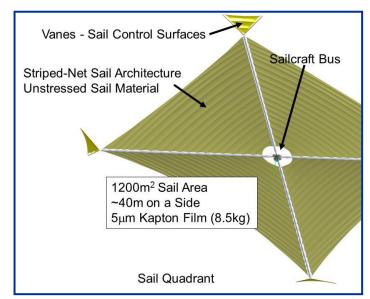


Under Development

Compact Coronagraph (CCOR)

NOAA currently uses SOHO coronagraph to detect and characterize coronal mass ejections (CMEs)

- CCOR design offers reduced sensor mass and volume at lower cost
 - 6 kg telescope, 17 kg for sensor
 - Optical train is 1/3 length of traditional coronagraphs & uses multiple occulters
- NRL completed Phase A study & successfully bench tested the optical design
- NOAA will continue to fund risk reduction studies at NRL
- CCOR ranked in DoD Space Experiments Review Board for STP launch
- CCOR under consideration for DSCOVR follow-on mission options



Technology Demonstration

tion 🔽

Sunjammer – Solar Sail Demonstration 5

- Sunjammer is a NASA technology demonstration mission (TDM) to examine the propellantless propulsion potential of solar sails
- Mission will demonstrate sail maneuvers in its first 30 days – then continue to provide space weather data (possibly at 2x L1 [TBD])
- NOAA plans to partner with L'Garde, Inc to provide data reception, analysis and archive
- Mission is an important indicator for the viability of commercial space missions
- Space weather instruments:
 - Particle spectrometer MSSL
 - Magnetometer Imperial College London
- NOAA will assist in evaluating the data

Sunjammer Quadrant Deployment Test 9.30.2013

DSCOVR Follow-on

Operational Solar Wind / CME Imagery Missions

NOAA is committed to continued solar wind/CME monitoring

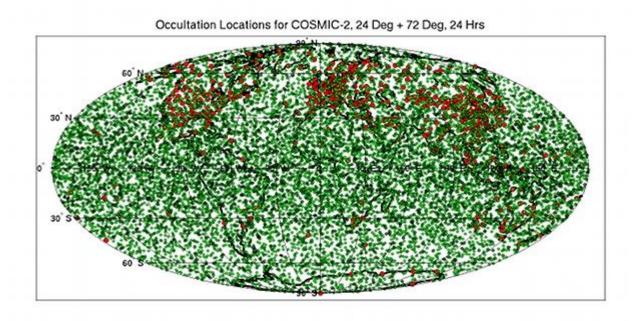
Solar Wind – Commercial and other options:

- Evaluate Sunjammer mission performance data for improved space weather forecasts
- Evaluate business case for Sunjammer commercial data buy option
- Examine sensor concepts for improved sensor performance; i.e. extending DSCOVR Plas/Mag measurement range
- Refresh cost estimates for other options such as government satellites

CME Imagery

- Continue CCOR risk reduction studies at NRL
- Pursuing STP launch option
- Include CME imagery option in DSCOVR follow-on studies

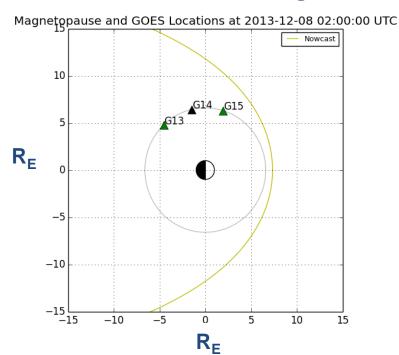
NOAA L1 Requirements Workshop – 7 April 2014 (SWPC/Boulder, CO)


- >60 participants held in conjunction with Space Weather Workshop
- Meeting report to be released [TBD]

New Capability GNSS Radio Occultation – COSMIC 2

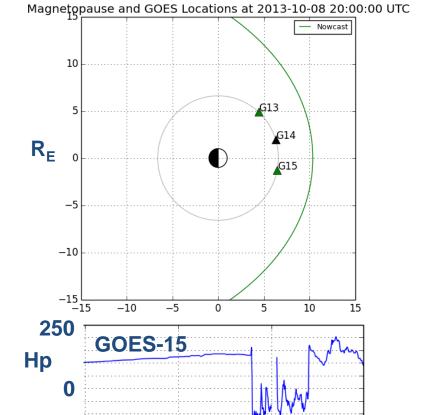
Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC 2)

- Taiwan-USAF-NOAA Partnership
- 12 satellite constellation 6 @ 24° inclination (low) / 6 @ 72° inclination (high)
- Phase 1 launch planned for May 2016 low inclination; Phase 2 launch 2018
- NOAA coordinating with international partners to host/operate ground receptors
- Full up constellation will acquire more than 8000 ionospheric soundings per day


Expanded Products & Services

Geosynchronous Magnetopause Crossings

-150


December 8, 2013, model predicts magnetopause crosses GEO. No GOES near noon to confirm

Predicted Crossing

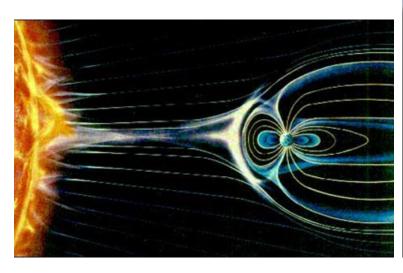
Note: GOES-14 is currently not operational and thus is not providing magnetometer measurements (black triangle)

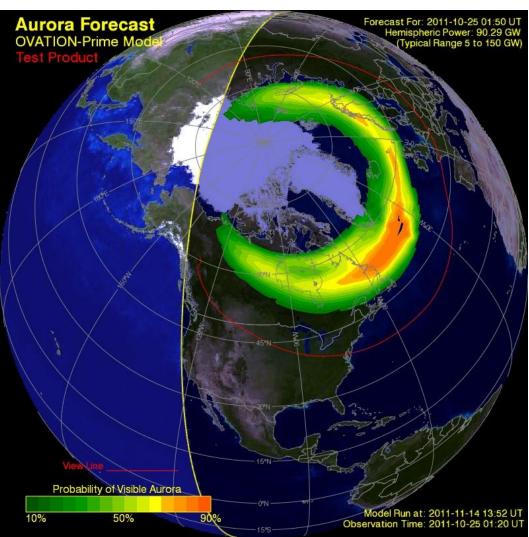
October 8, 2013, GEO orbit inside magnetosheath. Negative polar field (red triangle) and e-flux dropout observed near noon Observed Crossing

18:00

UT

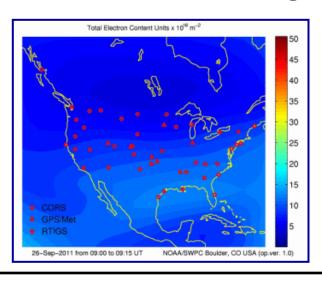
21:00

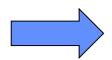


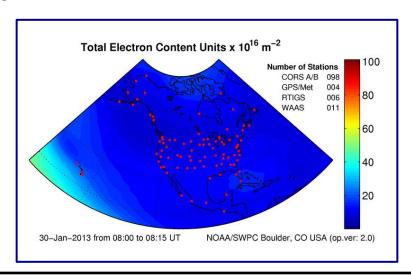

Expanded Products & Services Ovation Auroral Forecast Model

Methodology developed at JHU/APL

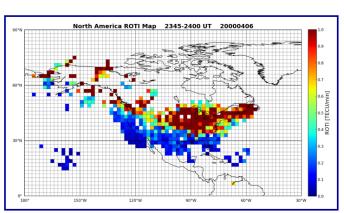
- 30-40 min forecast driven by ACE solar wind and interplanetary magnetic field data
- Developed as a joint project between NGDC and SWPC
- Customer products now available from SWPC – <u>link</u>



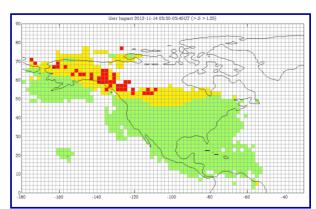

Expanded Products & Services



Extending current US-TEC product to NA-TEC



Research to Operations


Rate of TEC Index Product

Related products

Research and Development

GPS Scintillation Specification

Thank You!

EGU - 27 Apr -02 May 2014